0  447251  447259  447265  447269  447275  447277  447281  447287  447289  447295  447301  447305  447307  447311  447317  447319  447325  447329  447331  447335  447337  447341  447343  447345  447346  447347  447348 

19.★(本小题满分10分)已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2a2a3的等差中项,且.求极限的值.

分析 首先需求出anbn的表达式,以确定所求极限的表达式,为此,关键在于求出两个数列的公差,“b2a2a3的等差中项”已给出一个等量关系,“anbn之比的极限为”又给出了另一个等量关系,故可考虑先设出公差用二元方程组求解.

解 设{an}、{bn}的公差分别为d1d2,

∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1),

∴2d2-3d1=2.①   2分

d2=2d1,②    4分

联立①②解得d1=2,d2=4.

an=a1+(n-1)d1=3+(n-1)·2=2n+1,

bn=b1+(n-1)d2=2+(n-1)·4=4n-2.   6分

10分

试题详情

18.(本小题满分10分)已知数列{an}、{bn},其中an=1+3+5+…+(2n+1),bn=2n+4(n≥5),试问是否存在这样的自然数n,使得anbn成立?

分析 对n赋值后,比较几对anbn的大小,可作出合理猜测,再用数学归纳法予以证明.

an=1+3+5+…+(2n+1)=(n+1)2,

n=5时,a5=36,b5=25+4=36,此时a5=b5;

n=6时, a6=49,b6=26+4=68,此时a6<b6;

n=7时,a7=64,b7=27+4=132,此时a7<b7;

n=8时,a8=81,b8=28+4=260,此时a8<b8.

猜想:当n≥6时,有an<bn.     3分

下面用数学归纳法证明上述猜想.

①当n=6时,显然不等式成立,∴n=6时,不等式an<bn成立;

②假设当n=k(k≥6)时,不等式成立,即ak<bk,也即(k+1)2<2k+4;当n=k+1时,bk+1=2k+1+4=2(2k+4)-4>2(k+1)2-4=2k2+4k-2,

而(2k2+4k-2)-(k+2)2=k2-6>0(∵k≥6,∴k2>6),

即2k2+4k-2>(k+2)2=[(k+1)+1]2.

由不等式的传递性,知bk+1>[(k+1)+1]2=ak+1.

∴当n=k+1时,不等式也成立.   8分

由①②可知,对一切n∈N,且n≥6,都有an<bn.

综上所述,可知只有当n=5时,an=bn;当n≥6时,anbn.因此存在使anbn成立的自然数n.

10分

试题详情

17.(本小题满分8分)某校有教职工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室.据调查统计,每次去健身房的人有10%下次去娱乐室,则在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?

分析 本题考查用数列的递推公式求通项及数列的极限.

解 设第n次去健身房的人数为an,去娱乐室的人数为bn,则an+bn=150,        2分

an=an-1+bn-1=an-1+(150-an-1)=an-1+30,

an=an-1+30.          4分

an-100=(an-1-100).于是an-100=(a1-100)·()n-1,即an=100+()n-1·(a1-100).  6分

an=100.故随着时间的推移,去健身房的人数稳定在100人左右.        8分

试题详情


扫码下载作业精灵
同步练习册答案
网站地图 杏彩娱乐q29366 钱柜游戏手机客户端 ub8优游娱乐官网
申博线路检测中心 申博亚洲上网导航 申博太阳城娱乐场 宝马娱乐平台
盛大彩票新疆11选5 9号彩票河北快三 亿润财富娱乐 bbin视讯棋牌游戏登入
博天堂在线娱乐官网 环亚国际开户 博天堂娱乐航母手机版 环亚备用网址
辉煌棋牌线上娱乐 拉菲娱乐登录地址 钱柜678客户端 钱柜777客户端
818XTD.COM XSB889.COM 175psb.com 144TGP.COM 218PT.COM
378PT.COM 638XTD.COM 989DC.COM 132cw.com XSB897.COM
8ZTS.COM XSB878.COM 8YQS.COM 800xsb.com 985sunbet.com
11sbsun.com XSB578.COM 575sj.com 55sbmsc.com 66sbmsc.com